IOWA STATE UNIVERSITY College of Engineering

mm-Wave Image Radar

Senior Design December 2023 - Team 20 Client/Advisor: Dr. Mohammad Tayeb Al Qaseer

Team Members/Roles:

Matt Caron - PCB design Nathan Ayers - User Interface Rodrigo Romero - SPI Implementation (FPGA) Michael Levin - DSP (FPGA)

Team Email: sddec23-20@iastate.edu Team Website: <u>https://sddec23-20.sd.ece.iastate.edu/</u>

Problem Statement

Who? Our client, Dr. Tayeb and the CNDE conduct research into evaluating a system or structure without affecting its future usability and functionality.

What? The CNDE needs a new mm-Wave radar to be built for student research experiments.

Why? Millimeter-Wave technology has been used to penetrate dielectric materials and has a high sensitivity to small material flaws. Research benefits safety and can help companies increase sustainability.

When? Students are already experimenting with samples that have errors designed to test the imaging. The applications will continue to grow and the technology will impact everyone.

IOWA STATE UNIVERSITY

Conceptual Sketch

IOWA STATE UNIVERSITY

Functional Requirements

The Intermediate Frequency Circuit **MUST** do the following:

- Digitally generate a periodic signal with a frequency of up to 15 MHz.
- Output Signals through a DAC to the mm-wave radar.
- Return signal from the mm-wave radar (up to 15 MHz) using an ADC.

College of Engineering

- The FPGA will send the data to a PC using USB.
- Application on the PC to interface with the FPGA.
- Design PCB for the FPGA interface with the ADC/DAC.

Non-Functional Requirements

Ideally, the Intermediate Frequency circuit **SHOULD** have the following features:

- Have a simple user interface that utilizes a GUI. ٠
- Be written in one of the following languages, C#, ٠ Python, Labview, Matlab.
- Require minimal user configuration.
- Compact and portable packaging.
- A PC program that will store the data from the DSP ٠ block so that it can be used in Matlab or Labview.
- ADC and DAC with 3.3 V supplies, matching the • FPGA.

College of Engineering

Technical Constraints

Image Rejection

IF circuit must reject signals at the image frequency

Selectivity

IF filter has a specific range (26.5 to 40 GHz) to reject unwanted signals outside of the passband

IOWA STATE UNIVERSITY

Technical Constraints

Gain

The IF circuit must provide sufficient gain to amplify the signal to a level that can be further processed by subsequent stages of the receiver

Frequency stability

The IF circuit must be designed to provide stable and accurate frequency conversion to ensure that the signal is demodulated correctly

College of Engineering

Potential risks

- Design risks
 - Component selection, circuit layout, and noise.
- Performance risks
 - Quality of the components used, environmental conditions, and interference from other devices.
- Schedule risks
 - Missing deadlines
- Safety risks
 - Minimal, but harsh chemicals and risks of burns with hardware assembly

IOWA STATE UNIVERSITY

Mitigations

- Design risks
 - Have professionals in the lab to check over work before implementing it.
- Performance risks
 - Simulate designs to determine what tolerances we deem acceptable in the components
- Schedule risks
 - Establishment of accountability between us and our faculty mentor.
- Safety risks
 - Wear PPE when dealing with harsh chemicals

IOWA STATE UNIVERSITY

Resource Estimate

<u>Resource</u>	Description	<u>Cost</u>
Labor work	Hours invested in the project by students and faculty mentor	\$2500
ADC/DAC	Converters of the circuit	\$500
FPGA	Field Programmable Gate Array	\$500
Monitor	Displayer of collected information	\$300
Accessories	Miscellaneous accessories (USB, cables, 3D printed parts, and others)	\$200
TOTAL		\$4000

IOWA STATE UNIVERSITY

Project Schedule / Milestones

Project Launch Plan

Та	sk Name	2023											
	mm Wave imaging Radar (Tentative)	-										202d	
1	Matthew Caron	F		-					_				
	Design the PCB	-	-			79d							
	Select the ADC and DAC for the PCB	-				65d							
	Produce the PCB								73	d			
	Integrate PCB with inherited Hardware & FPGA									11d			
1	Michael Levin										161		
	Install and gain familiarity with Vivado				15d								
	Create a rudimentary structure for decomposing inputs into real and imaginary outputs						61d						
	Make the system work on a clock connected to the SPI							46d					
	Output Binary through FPGA to pins										68d		
I	Rodrigo Romero			_						-1			
	Install and gain familiarity with Vivado						70d						
	Learn how to detect the on/off status of pin, reading from interface						24d						
	Create a signal through either pre-made FPGA modules or by using the FPGA clock									8	0d		
- 6	Nathan Ayers		Ļ				i ji					179d	20
	Install FTDI drivers for USB communication with FPGA and PCB pins via the FTDI cip				23d								

Task Name	2023												
mm Wave imaging Radar (Tentative)											202d		
Learning how to use driver libraries to make pins go high and low, respectively						43d							
Design a standard simple C# GUI.							41	d					
Design a method for taking binary as input from DSP and converting into Real and imaginary components.								16d					
Work with Rodrigo to ensure that we are on the same page for activating SPI from the PC.									22d				
Work with Michael to properly receive and store the components of a signal, and store them in files.											39d		
Testing												23d	
Testing the features, ensuring full function												23d	

IOWA STATE UNIVERSITY

Functional Decomposition

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

Chosen Hardware Platforms

- Hardware
 - ADC
 - ADC12DC105
 - DAC
 - AD9767
 - FPGA
 - Xilinx Artix-7
 - FTDI Chip
 - USB 3.0

• Mini RSI

IOWA STATE UNIVERSITY

Chosen Software Platforms

- SPI
 - Vivado/ Vitis
- DSP
 - Vivado/ Vitis
- FPGA Interface
 - FTDI D3XX Driver
- User Interface
 - C#

int main(){

```
FT_STATUS ftStatus;
FT_HANDLE ftHandle;
FT_DEVICE_LIST_INFO_NODE *devInfo;
DWORD numDevs;
// create the device information list
ftStatus = FT_CreateDeviceInfoList(&numDevs);
```

```
f (ftStatus == FT_OK) {
    printf("Number of devices is %d\n",numDevs);
```

```
f (numDevs > 0) {
    // allocate storage for list based on numDevs
    devInfo = (FT_DEVICE_LIST_INFO_NODE*)malloc(sizeof(FT_DEVICE_LIST_INFO_NODE)*numDevs);
    // get the device information list
    ftStatus = FT_GetDeviceInfoList(devInfo,&numDevs);
```

```
(ftStatus == FT_OK) {
  for (int i = 0; i < numDevs; i++) {
    printf("Dev %d:\n",i);
    printf(" Flags=0x%x\n",devInfo[i].Flags);
    printf(" Type=0x%x\n",devInfo[i].Type);
    printf(" ID=0x%x\n",devInfo[i].ID);
    //printf(" LocId=0x%x\n",devInfo[i].LocId);
    printf(" SerialNumber=%s\n",devInfo[i].Description);
    printf(" ftHandle=0x%x\n",devInfo[i].ftHandle);
    }
}
</pre>
```

IOWA STATE UNIVERSITY

Test Plan

- Hardware
 - Continuity Confirmation
 - Multimeter on all connected components
 - Checking for short/open circuits
 - Signal Confirmation
 - Oscilloscope for all PCB components
 - Confirming cutoff frequencies of ADC and DAC Filters

College of Engineering 20

Test Plan

- Software
 - FPGA Interfacing
 - Sending simulated signals to FPGA LEDs
 - Inputting waveforms looking at received data
 - FPGA Program Confirmation
 - Specific waveforms inputs looking at GUI data
 - Input waveforms with GUI looking at SPI output with oscilloscope

Prototype Implementation

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

BLOCK DESIGN - Au_design *

IOWA STATE UNIVERSITY

Conclusion

 This device will assist researchers at Iowa State to measure a material's dielectric properties at mmWave frequencies

College of Engineering

- Some of these properties include:
 - Reflection coefficients
 - Transmission coefficients
 - Dielectric constants

Conclusion

 From these properties we can make many measurements on a material and format the data in a way to image composites to look for flaws (think X-ray but non-ionizing)

IOWA STATE UNIVERSITY

Conclusion

This project includes various disciplines of Electrical Engineering

- Hardware
 - FPGA design
 - USB interfacing with the FPGA and PC
 - 2 channel digital to analog conversion
 - 2 channel analog to digital conversion
 - Radar interfacing
- Software
 - Embedded programming (microblaze processor inside the FPGA)

College of Engineering 28

- USB 3.0 communication between FPGA and PC
- GUI design for saving and imaging data

Questions?

IOWA STATE UNIVERSITY